Complexity of Two-Variable Logic on Finite Trees
نویسندگان
چکیده
منابع مشابه
Extending Two-Variable Logic on Trees
The finite satisfiability problem for the two-variable fragment of first-order logic interpreted over trees was recently shown to be ExpSpace-complete. We consider two extensions of this logic. We show that adding either additional binary symbols or counting quantifiers to the logic does not affect the complexity of the finite satisfiability problem. However, combining the two extensions and ad...
متن کاملTwo - Variable Logic on Data
In a data word each position carries a label from a finite alphabet and a data value from some infinite domain. This model has been already considered in the realm of semistructured data, timed automata and extended temporal logics. This paper shows that satisfiability for the two-variable fragment FO(∼,<,+1) of firstorder logic with data equality test ∼, is decidable over finite and over infin...
متن کاملthe effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing
بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...
15 صفحه اولComplexity Results for First-Order Two-Variable Logic with Counting
Let C 2 p denote the class of rst order sentences with two variables and with additional quantiiers \there exists exactly (at most, at least) i", for i p, and let C 2 be the union of C 2 p taken over all integers p. We prove that the satissability problem for C 2 1 sentences is NEXPTIME-complete. This strengthens the results by E. Grr adel, Ph. Kolaitis and M. Vardi 15] who showed that the sati...
متن کاملTwo-Variable First Order Logic with Counting Quantifiers: Complexity Results
Etessami, Vardi and Wilke [5] showed that satisfiability of two-variable first order logic FO[<] on word models is Nexptime-complete. We extend this upper bound to the slightly stronger logic FO[<, succ,≡], which allows checking whether a word position is congruent to r modulo q, for some divisor q and remainder r. If we allow the more powerful modulo counting quantifiers of Straubing, Thérien ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Computational Logic
سال: 2016
ISSN: 1529-3785,1557-945X
DOI: 10.1145/2996796